Adjusting Mixture Weights of Gaussian Mixture Model via Regularized Probabilistic Latent Semantic Analysis
نویسندگان
چکیده
Mixture models, such as Gaussian Mixture Model, have been widely used in many applications for modeling data. Gaussian mixture model (GMM) assumes that data points are generated from a set of Gaussian models with the same set of mixture weights. A natural extension of GMM is the probabilistic latent semantic analysis (PLSA) model, which assigns different mixture weights for each data point. Thus, PLSA is more flexible than the GMM method. However, as a tradeoff, PLSA usually suffers from the overfitting problem. In this paper, we propose a regularized probabilistic latent semantic analysis model (RPLSA), which can properly adjust the amount of model flexibility so that not only the training data can be fit well but also the model is robust to avoid the overfitting problem. We conduct empirical study for the application of speaker identification to show the effectiveness of the new model. The experiment results on the NIST speaker recognition dataset indicate that the RPLSA model outperforms both the GMM and PLSA models substantially. The principle of RPLSA of appropriately adjusting model flexibility can be naturally extended to other applications and other types of mixture models.
منابع مشابه
A Descriptive Framework for the Field of Data Mining and Knowledge Discovery
s of forty-nine regular papers from PAKDD 2005 [Ho et al. 2005], which were not used in the framework building process, were collected and analyzed to see if they fit in the categories identified by grounded theory. The abstract of each article was analyzed to identify the primary objective(s) the author(s) are addressing. Take the article “Adjusting Mixture Weights of Gaussian Mixture Model vi...
متن کاملA Note on EM Algorithm for Probabilistic Latent Semantic Analysis
In many text collections, we encounter the scenario that a document contains multiple topics. Extracting such topics/subtopics/themes from the text collection is important for many text mining tasks, such as search result organization, subtopic retrieval, passage segmentation, document clustering, and contextual text mining. A well accepted practice is to explain the generation of each document...
متن کاملLatent Dirichlet Allocation
We propose a generative model for text and other collections of discrete data that generalizes or improves on several previous models including naive Bayes/unigram, mixture of unigrams [6], and Hofmann's aspect model , also known as probabilistic latent semantic indexing (pLSI) [3]. In the context of text modeling, our model posits that each document is generated as a mixture of topics, where t...
متن کاملIMAGE SEGMENTATION USING GAUSSIAN MIXTURE MODEL
Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we have learned Gaussian mixture model to the pixels of an image. The parameters of the model have estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image is made by Bayes rule. In fact, ...
متن کاملImage Segmentation using Gaussian Mixture Model
Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005